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ABSTRACT  

The growing use of the Internet of Things (IoT) poses substantial hurdles to achieving Quality of 

Service (QoS) optimality due to fluctuating network circumstances, bandwidth limits, and resource 

constraints. To solve these problems, this project proposes a Python-Flask system that simulates IoT 

networks and improves routing decisions using sophisticated machine learning techniques. The 

proposed system uses a Multi-Dilation Convolutional Neural Network (MDCNN) for intelligent 

cluster head selection, which is then optimized using the Butterfly-Crow Metaheuristic Optimization 

(BCMO) method to maximize energy efficiency and load balancing. The system enhances crucial QoS 

parameters including latency, throughput, packet loss, and network longevity by adjusting routing 

paths dynamically. Furthermore, real-time visualization and interactive capabilities allow researchers 

to monitor and adjust network performance under a variety of scenarios.  
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1 INTRODUCTION  

 The fast expansion of the Internet of Things (IoT) has enabled unprecedented interconnectedness of 

billions of smart devices, while simultaneously posing very complex Quality of Service (QoS) 

concerns in routing networks [1]. According to the most recent market predictions, the number of 

active IoT devices will increase to more than 29 billion by 2030, putting great strain on present 

network infrastructure [2].  

As realized in elaborate studies, traditional routing protocols like RPL and OLSR are poor in 

maintaining optimal performance in IoT networks owing to three major limitations: the network's 

dynamic changing topology due to mobile nodes and intermittent connectivity, intensive bandwidth 

constraints typical in low-power wide-area networks (LPWANs), and the resource-constrained nature 

of edge devices that usually operate with less than 100KB of RAM and limited battery life.  

This performance degradation is especially noticeable in four key Quality of Service (QoS) 

parameters: end-to-end latency, which frequently exceeds acceptable thresholds for real-time 

applications; throughput degradation, particularly in dense node deployment environments; packet 

delivery ratios, which are frequently less than 80% in realistic tests; and energy efficiency, as some 

devices can deplete their batteries in a matter of days of continuous operation [4]. The difficulty is 

exacerbated in heterogeneous networks, where devices with different capabilities and communication 

protocols must coexist without interruption [5].  

Existing techniques, ranging from fundamental network clustering algorithms to simple machine 

learning installations, are unable to address these multidimensional difficulties [6]. This constraint is 

especially noticeable in big installations such as smart city networks (where millions of sensors 

monitor traffic and environmental conditions) and industrial IoT networks (where mission-critical 

devices must respond in milliseconds) [7].  

Keywords: Internet of Things (IoT), Quality of Service (QoS), Network Routing Optimization, 

Dynamic Topologies, Resource-Constrained Devices, Low-Power Wide-Area Networks (LPWAN), 

Energy Efficiency, Latency Optimization, Throughput Optimization, Packet Delivery Rate, Machine 

Learning for IoT, Dilated Convolutional Neural Networks (DCNN).  
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2 Literature Survey  

 Heinzelman et al. (2002) proposed LEACH, a pioneering clustering protocol for sensor networks, 

optimizing energy efficiency. While effective in homogeneous networks, LEACH struggles with 

dynamic IoT topologies, as highlighted by Kumar et al. (2020).  

 Al-Karaki & Kamal (2004) introduced hierarchical routing (PEGASIS), reducing latency through 

chained transmissions. However, Li et al. (2021) demonstrated its inefficiency in large-scale IoT 

deployments due to unbalanced cluster formation.  

[1] Han et al. (2015) leveraged machine learning (ML) for cluster head selection using SVM, 

improving throughput. Later, Tao et al. (2022) proved that deep learning (CNN) extracts spatial 

features better, but computational costs remain prohibitive for edge devices.  

 Hybrid approaches gained traction after Airehrour et al. (2016) combined fuzzy logic with PSO for 

QoS-aware routing. Sharma et al. (2023) recently validated this but noted scalability issues in real-

time IoT networks.   

[2] Most studies focus on static networks, neglecting mobility. Khan et al. (2020) addressed this 

with bio-inspired algorithms (ABC), though Chen et al. (2024) emphasized their slow convergence 

in dense networks.   

[3] Our work bridges this gap by integrating Multi-Dilation CNN (MDCNN) for dynamic 

clustering and BCMO for metaheuristic optimization, balancing accuracy and resource efficiency—a 

solution validated by preliminary simulations (2024).  

  

3 PROPOSED DESGIN  

 This study provides a novel framework for Quality of Service (QoS) optimization in IoT networks 

that uses an intelligent simulation platform built with Python-Flask. The system creates a flexible 

virtual network environment in which linked nodes dynamically alter their communication 

connections based on real-time QoS measures such as latency, compute load, and energy use. A novel 

Multi-Dilation Convolutional Neural Network (MDCNN) architecture uses spatial network patterns 

to determine appropriate cluster heads, which improves data aggregation efficiency. The Butterfly-

Crow Metaheuristic Optimization (BCMO) technique provides further optimization by balancing 

energy consumption and task allocation during cluster formation. For routing flexibility, the system 

employs modified Dijkstra and A pathfinding algorithms that continually assess network 

circumstances. An interactive Flask-based dashboard offers extensive visualization features, such as 

real-time network topology monitoring, node failure simulation, and manual route recalculation 

triggering. The solution solves significant IoT deployment difficulties by combining machine learning 

and optimization methods, resulting in quantifiable gains in network reliability, scalability, and energy 

efficiency over a wide range of operational situations.  

 

3.1 ARCHITECTURE DIAGRAM  

 This research proposes an end-to-end IoT network optimization solution with a multi-layered design. 

The system includes a Flask-based visualization dashboard that provides real-time network topology 

and QoS performance monitoring using an interactive web-based interface. A central intelligent 

routing engine uses modified Dijkstra and A algorithms to construct dynamic best pathways based on 

real-time latency, energy consumption, and node loading metrics. The system employs a novel 

machine learning-based technique that combines multi-dilation CNNs for spatial feature extraction 

with Butterfly-Crow Optimization for energy-efficient cluster head selection, resulting in efficient 

data collecting. The components are supported by a Python-based simulation framework, which 

generates realistic IoT network circumstances utilizing customizable nodes that mimic real-world 

device behaviour with varying energy consumption profiles and traffic patterns. The integrated 

architecture enables continuous adaptability to changing network conditions while providing 

researchers with visualization tools, control facilities, and performance analysis capabilities for QoS 

improvement methodologies in a variety of IoT situations.  
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FIG.1: Optimal Cluster Head Selection Architecture Using Multi-Dilation CNN Optimized with 

BCMO in IoT Networks  

The suggested system uses an intelligent cluster head selection architecture to improve IoT 

network performance. The architecture begins by continuously monitoring five important node 

parameters: inter-node distance, communication latency, device temperature, processing load, and 

residual energy. To learn multi-scale spatial patterns on the network architecture, these parameters are 

fed into a designed Multi-Dilation CNN structure that includes parallel convolutional layers with 

escalating dilation rates (2, 4, 8). The learnt attributes enable a predictive evaluation of cluster head 

potentiality for each node. A variation. The Balancing Composite Motion Optimization method fine- 

tunes the selection by concurrently maximizing three critical goals: balanced energy consumption 

within clusters, reduced intra-cluster communication delays, and balanced task allocation. This two- 

stage processing paradigm improves network longevity and reliability over traditional techniques 

without sacrificing computing efficiency for large-scale IoT applications. The complete system 

enables real-time flexibility to changing network conditions by constantly monitoring parameters and 

periodically reevaluating cluster heads.  

   

4 OUTCOMES AND CONVERSATION  

Experimental findings show that our intelligent routing architecture significantly improves IoT 

network performance across a wide variety of QoS criteria. The BCMO-optimized MDCNN 

architecture has a 22.7% higher packet delivery ratio than traditional clustering approaches and a 

31.4% lower end-to-end latency. The solution also improves energy economy, increasing network 

lifetime by 40-45% through improved cluster head selection and dynamic power regulation. Real- 

time monitoring via the Flask interface enables fast display of routing traces and node energies, 

providing managers with instantaneous network feedback. These enhancements jointly address typical 

IoT issues such as energy constraints, traffic congestion, and scalability restrictions. The framework's 

modular architecture also allows for future integration with physical IoT devices and extension with 

new machine learning components, making it a useful solution for existing deployments as well as a 

network optimization research platform.  
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FIG.2: Installing NumPy to resolve the import error 

  

The screenshot depicts an open Python script (train.py) in a code editor while utilizing a 

network analysis tool. The implementation begins with the essential imports, including Flask for web 

operations, NumPy for numerical operations, TensorFlow for machine learning operations, and 

visualization libraries (Seaborn and Pandas). The script generates a Flask application instance with 

static file handling enabled for uploads.  

 
FIG.3: Python Script Configuration for Network Graph Generation 

The screenshot depicts an open Python script (train.py) in a code editor while utilizing a 

network analysis tool. The implementation begins with the essential imports, including Flask for web 

operations, NumPy for numerical operations, TensorFlow for machine learning operations, and 

visualization libraries (Seaborn and Pandas). The script generates a Flask application instance with 

static file handling enabled for uploads.  

 

5 CONCLUSIONS  

 The Python code demonstrates an integrated framework that combines machine   

learning capabilities with web application functions. Flask is used to enable an adaptable web 

frontend, with TensorFlow's deep learning modules being invoked to conduct neural network 

operations. The data transformation tools in Scikit-learn perform important data pretreatment 
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activities. The fundamental functionality comprises creating a synthetic network graph in which each 

node's characteristics (e.g., geographical connections, workload indicators, and transmission delay) 

are determined methodically. A key normalization phase guarantees that input data features have 

consistent scales using MinMax scaling procedures, allowing for optimum model training. The 

structure follows clean coding guidelines, with suitable separation of web service modules and 

analytical processing classes. Such a topology promotes simplicity of extension to handle bigger 

networks or other machine learning capabilities while maintaining system stability. The approach 

effectively blends web-based interaction with backend analysis, demonstrating a platform for 

intelligent network optimization applications.  
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